Quasi Partial Sums of Harmonic Univalent Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Sums of Certain Univalent Functions

The partial sums f3(z) of some extermal functions for various classes S∗, K and R of starlike functions, convex functions and functions with positive real part in the open unit disk U, respectively, are discussed. In general, the partial sums can not preserve the same character as the initial functions. The object of the present paper is to discuss the radius problems for partial sums of some e...

متن کامل

Partial Sums of Generalized Class of Harmonic Univalent Functions Involving a Gaussian Hypergeometric Function

The purpose of the present paper is to establish some new results giving the sharp bounds of the real parts of ratios of harmonic univalent functions to its sequences of partial sums by involving the Gaussian hypergeometric function. Relevant connections of the results presented here with various known results are briefly indicated. We also mention results which are associated with certain clas...

متن کامل

A Convolution Approach on Partial Sums of Certain Harmonic Univalent Functions

A continuous complex-valued function f u iv is said to be harmonic in a simply connected domain D if both u and v are real harmonic in D. In any simply-connected domain we can write f h g, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that |h′ z | > |g...

متن کامل

Partial Sums of Certain Harmonic Multivalent Functions

In this paper, we study the ratio of harmonic multivalent functions to its sequences of partial sums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Colombiana de Matemáticas

سال: 2019

ISSN: 2357-4100,0034-7426

DOI: 10.15446/recolma.v53n1.81035